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Wilson et al. (2013): Are scenarios consistent 

with historical evidence? 

 C. Wilson,  A. Grubler, N. Bauer, V. Krey & K. Riahi 

(2013), ‘Future Capacity Growth of Energy Technologies: 

are Scenarios Consistent with Historical Evidence?’ 

Climatic Change 118:381–395 

– Energy system scenarios under  GHG emission 

constraints depict dramatic growth in energy 

technologies. 

– The paper’s methodology allows projected capacity 

expansions of low carbon energy technologies to be 

compared against historically-evidenced diffusion 

– Offering a first-order verification of model output against 

the observed historical record 



Wilson et al. (2013): argument & findings 

 Historical time series data reveal a relationship between 

how much a technology’s cumulative installed capacity 

grows (extent) & how long this growth takes (duration) 

 This extent-duration relationship is both consistent across 

8 energy supply & end-use technologies and across 

established & emerging technologies 

 Power generation technology data from two integrated 

assessment & energy-economic models (MESSAGE-

IAMF & REMIND-AME) yield a consistent extent-duration 

relationship across technologies & scenarios 

 The scenarios depict longer capacity growth durations to 

reach a given extent of growth than the historical pattern 

  The findings are largely robust across technologies, 

regions & times 

 



Wilson et al: 6-stage method for comparing past 

& future energy technology growth trajectories 

I. Compile global time series of cumulative capacity (MW) of 

energy technologies, historically & in IAM scenarios 

II. Disaggregate global data into core, rim & periphery 

regions, defined by sequence of widespread diffusion 

III. Fit logistic functions subject to appropriate criteria 

IV. Extract logistic function asymptote parameter (K) 

(saturation level) & time variable (Δt), as proxies for extent 

& duration of capacity growth 

V. Normalise asymptote parameter K for changes in energy 

system size 

VI. Plot & compare relationships between extent of growth 

(normalized K) & duration of growth (Δt), both historically 

& in future scenarios, at global & regional scales. 



Historic capacity growth, 8 energy technologies (a); 

fitted extent (k) vs. duration of growth (Δt) (b) 

Source: Wilson et al. (2013) 



Capacity growth of 6 electricity technologies in 

8 MESSAGE scenarios: extent vs. growth 

Source: Wilson et al. (2013) 



Extent-duration: historically & in future scenarios 

The scenarios depict longer capacity growth durations to reach a given 

extent of growth than the historical pattern 

Historical 

MESSAGE-IAMF 
MESSAGE-IAMF & 

REMIND-AME 

Historical 

Source: Wilson et al. (2013) 



Explanations for scenario conservatism? 

 No single explanation for the scenario conservatism 

– The centennial timescales of future scenarios or the use 

of historical energy technologies to build a comparator 

for future electricity technologies may mean this finding 

is a methodological artefact 

– Or energy system models may be parametrically 

conservative (in terms of growth constraints or other 

exogenous technology parameters) 

– And/or structurally conservative (e.g. endogenous 

drivers of & constraints on rapid capacity expansion). 

 

 



Wilson at al: three important caveats  

1) Potential explanatory variables for observed & modelled 

growth dynamics, inc. relative costs, efficiencies & 

technology turnover rates, not addressed 

– Cross-technology analysis => observed consistency of 

historical & scenario extent-duration relationships is 

inherently general 

2. More historical data for more technologies needed, to 

provide reliable trend to compare with scenarios; scenario 

data could include end-use technologies from models with 

more detailed end-use sector resolutions 

3. Use of logistic functions a strength in providing common 

form with extent & duration parameters allowing cross-

technology comparisons. Its weakness: excluding 

technologies in early lifecycle &/or growing exponentially 



So what does Wilson et al. tell us? 

 Suppose Wilson et al. are right & findings survive greater 

scrutiny, better data, more explanatory variables, etc. 

– The scenario models are wrong & transitions to low 

carbon technologies could be quicker (& cheaper?) 

– Implication: models should better reflect observed 

historical processes; they remain relevant despite 

changes in socio-technical context & the externality/ 

public good nature of the climate change problem 

 Or one or more caveats mean the results don’t hold, so 

– History isn’t a direct guide to the future;  

– The models are right & reflect, maybe inadvertently, 

the difficulties of ensuring growth & penetration of low 

carbon technologies, under current policies 

 



Why might the transition be slower? 

 Path dependence & inertia, technological & institutional 

lock-in – see innovation & sustainability transitions 

literature 

 Responses by incumbent industries & technologies: 

Sailing Ship/Last Gasp Effects of obsolescent 

technologies 

 Issues with the fitness for the market of low carbon 

technologies & their attributes 

 Issues of governance (government/market/civil society 

logics) 

 Energy & climate policy issues 

 

 



Sailing Ship and Last Gasp Effects (SSE/LGE) 

 The ‘sailing ship’ effect  or ‘last gasp’ effect of obsolescent 

technologies 

– Where competition from new technologies stimulates 

improvements in incumbent technologies/industries 

 Examples (sometimes with hybridisation) 

– sailing ship improvements after competition from steam 

ships 

– Eventual adoption of Welsbach gas mantle in response 

to incandescent electric lamps (late C19) 

– Carburettor enhancements in response to fuel injection 

– Hybrid electric/ICE vehicles 

– Disk drives with SS flash memory 



Sailing ship and last gasp effects 

 As well as responding with performance enhancements, 

high carbon actors also lobby to resist institutional changes 

that favour low carbon technologies 

– Example: efforts of large German utilities in the 1990s to 

lobby for repeal of renewable energy FiTs 

 So sailing ship and last gasp effects can act to delay or 

weaken low carbon transitions and network decline 

 Note: the threat here is from low carbon technologies 

promoted by government rather than purely by the market 

– As yet not all such technologies have attributes that are 

superior &/or cost-competitive with incumbents 

– Placing incumbents in strong position to respond 

 



UK Gas Industry Transition 1945-1967* 

 By World War II, 800 private & municipal firms supplying  

‘town gas’ from coal 

 Industry fragmented, uncoordinated & ‘incoherent’ 

 Struggling to compete & with a costly feedstock 

 1948 nationalisation, reorganisation & new processes 

 State-owned company, led by Gas Council 

– Rationalised industry structure  - regional Area Boards 

& vertical integration 

– R &D investment & experiments with niche 

technologies: 

»  Lurgi coal gasification, reforming oil & imported 

LNG from Algeria 

 * Source: Arapostathis et al. (2013) 



Example: UK Gas Industry Transition 1945-1967 

 1966: bold move to new North Sea natural gas  

– Reorganised industry & actors, developed terminals & 

national gas grid from LNG pipeline ‘backbone’ 

 Challenging 10-year conversion of appliances of 6 million 

consumers by 1977 required new skills & training 

 So in less than 20 years, the industry 

– Reorganised itself twice 

– Undertook R & D & niche experimentation 

– Scrapped production assets, changed (fossil) supply 

feedstock/technology & end-use technologies 

 But this was under a government-led mode of governance 

in an industry that had already recognised its challenges 

 Is today’s gas industry ready for the low carbon 

challenge? 



What we might capture, drawing on the past 

 Historical case studies like that of the UK natural gas gas 

transition illustrate that 

 The conduct & outcomes of energy & climate policy 

depend on the interplay within & between 3 ‘trilemmas’: 

– Energy system governance 

– Energy policy objectives 

– Technologies & their attributes 

 And many other things too… 

 But let’s start with these three 

 



Action-Space Approach to Governance –  

3 Key Actor Groups: Market, Government & Civil Society 

17 

Market 

‘logic’ 

Government 

‘logic’ 

Civil Society 

‘logic’ 

? 

 Choices depend on actors’ competing 

‘logics’: messy, dynamic, interactive 

 Action-space maps shifting relationships 

 Via their interactions, each actor tries to 

‘enrol’ the others in their logic 

 The dominant actor – i.e. best ‘enroler’ - 

defines that period’s action-space 

 Influencing the pathway & its branching 

points 

 Recently we’ve seen UK moves from the 

market towards the government logic – 

Electricity Market Reform, etc. 

 And questions about role of civil society, 

especially in the heat transition 

Source: Jacquie Burgess & Tom Hargreaves – 

Transition Pathways Project (see Foxon, T.J.  2013 ) 



The Action Space for Transition Pathways 
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The Energy Policy Trilemma 

 In the UK & other countries we have seen changing 

priorities between these three objectives 
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Technology: General Purpose Technologies (GPTs) 

 GPTs help explain why the Industrial Revolution’s technical 

progress went on instead of petering out 

 Three core properties: 

– Capacity for continued innovation: costs fall & quality rises 

– Wide range of general uses 

– Users improve own technologies & find new uses (examples: 

steam engine, electrification, ICE & ICT)  
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Bringing the trilemmas together 

 Successful conduct of energy & climate policy determined 

not only by how a country resolves each trilemma, i.e.  

– The ranking of its policy objectives,  

– The logic & mode of governance it chooses & how it 

engages with key actors, 

– The properties of the energy supply & use 

technologies it develops  

 But by how these three elements interact with & feed 

back onto each other 
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Policy/Governance/Technology Space 

 This reminds us to think about 

– What are policies aiming for? 

– Who is aiming for it & with 

what forms of governance? 

– With what technologies & 

practices? 

 How might the interplay between 

energy policy, governance & 

technology play out (locally, 

nationally, globally) in future 

pathways? 
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Conclusion 

 The Wilson et al. paper offers a useful reminder  of the 

importance of drawing on historical experience – without 

necessarily trying to replicate it (should we expect high 

carbon transitions to be close analogues for a low carbon 

transition?) 

 Scenarios can learn from past transition experiences, 

without trying exactly to replicate them in a changed and 

changing world 

 History matters and, from the Industrial Revolution 

onwards,  illustrates the interplay between policy, 

governance & technology – an interplay we should 

explore in scenarios of the future. 
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